地?zé)岚l(fā)電

低溫地?zé)崴袡C(jī)朗肯循環(huán)發(fā)電工質(zhì)的優(yōu)化

  0 引 言
 
  隨著化石能源的緊缺以及人類環(huán)境壓力的加大,人們對(duì)于清潔可再生的綠色能源越來越重視。地?zé)崮茉?/a>于地球的熔融巖漿和放射性物質(zhì)的衰變,是目前廣泛利用的可再生熱能源之一,隨著地下水深處的循環(huán)和來自極深處的巖漿侵入到地殼后,把熱量從地下深處帶至近表層。地?zé)崮?/a>的儲(chǔ)量比目前我們所利用的能量總量還要多,加上地?zé)崮?/a>具有清潔性和再生性[1],許多國家都采用低溫余熱發(fā)電技術(shù)對(duì)其加以應(yīng)用,例如:德國的Neustadt-Glewe地?zé)岚l(fā)電站,采用簡單亞臨界有機(jī)朗肯循環(huán)(organic rankine cycle,ORC),以全氟化戊烷(n-Perfluorpentane,C5F12)為工質(zhì),以約98 ℃的地?zé)崴?/a>為熱源發(fā)電,發(fā)電量為210kW[2];美國的阿拉斯加運(yùn)行著1座以74℃的地?zé)豳Y源發(fā)電的電站[3]。目前,地?zé)岚l(fā)電技術(shù)地?zé)?/a>干蒸汽透平發(fā)電技術(shù)、地?zé)?/a>熱水閃蒸發(fā)電技術(shù)以及地?zé)?/a>驅(qū)動(dòng)的ORC發(fā)電技術(shù),與其他地?zé)崴?/a>發(fā)電技術(shù)相比較,ORC發(fā)電技術(shù)的經(jīng)濟(jì)效益更好。
 
  ORC發(fā)電的效果除了受蒸發(fā)溫度、凝結(jié)溫度、透平機(jī)以及進(jìn)氣溫度等參數(shù)的影響外,工質(zhì)的物性也是影響發(fā)電效率的主要因素之一[6],因而,對(duì)工質(zhì)的優(yōu)化選擇就顯得特別重要。文獻(xiàn)[7]基于火用分析為地?zé)崴?/a>ORC發(fā)電系統(tǒng)篩選出了異丁烷和R227ea這2種比較適合的工質(zhì)。文獻(xiàn)[8]對(duì)溫度為30100℃,壓力限定為2.0MPa的地?zé)?/a>機(jī)組進(jìn)行了研究,對(duì)烷烴、醚及其氟化物等31種可用于ORC的工質(zhì)物性參數(shù)進(jìn)行了計(jì)算且對(duì)ORC的設(shè)計(jì)進(jìn)行了對(duì)比,認(rèn)為在地?zé)幔希遥弥?,臨界溫度較低的工質(zhì)(R134a,R152a)是不錯(cuò)的選擇。文獻(xiàn)[9]對(duì)地?zé)崴?/a>溫在35110 ℃的地?zé)幔希遥脵C(jī)組進(jìn)行了研究,得出:當(dāng)工質(zhì)的臨界溫度與最高水溫接近時(shí),使用該工質(zhì)的系統(tǒng)效率較高;使用丙烯和R245fa作為工質(zhì)時(shí),系統(tǒng)效率較高,在水溫為100℃時(shí)系統(tǒng)效率分別為14.6%和14.1%。目前,文獻(xiàn)中常見的工質(zhì)優(yōu)化分析方法有火用效率、凈輸出功、熱效率、系統(tǒng)能量損失等評(píng)價(jià)方法[10-11],本文采用熱效率加不可逆損失方法對(duì)ORC系統(tǒng)進(jìn)行評(píng)價(jià)。
 
  (2)ORC系統(tǒng)。液體工質(zhì)經(jīng)工質(zhì)泵加壓后,在蒸發(fā)器中等壓吸熱,變成過熱高溫蒸汽(過程4—1);過熱蒸氣在汽輪機(jī)中絕熱膨脹,工質(zhì)對(duì)外做功(過程1—2),變成低溫低壓蒸氣;低壓蒸氣在冷凝器中等壓冷卻至液態(tài)(過程2—3);液態(tài)工質(zhì)通過工質(zhì)泵等熵加壓并送到熱交換器中(過程3—4)。如此連續(xù)循環(huán),將地?zé)崴械臒崃吭丛床粩嗟靥崛〕鰜?,生成高品位的電能?/div>
 
  (3)冷卻水循環(huán)系統(tǒng)。冷卻水經(jīng)冷凝器等壓冷卻有機(jī)工質(zhì)后,溫度升高經(jīng)冷卻水泵加壓送到冷卻塔中,被空氣冷卻后,循環(huán)使用。
 
  2 ORC工質(zhì)的選擇和計(jì)算
 
  2.1 工質(zhì)選取
 
  選擇ORC工質(zhì)時(shí),力求在熱源條件下使工質(zhì)吸收較多的熱量,并在把吸收的熱量更有效地轉(zhuǎn)化成功的同時(shí),也必須使所選擇的工質(zhì)滿足環(huán)保性和安全性要求。因而,所選工質(zhì)應(yīng)盡量滿足以下要求:(1)工質(zhì)的臨界溫度應(yīng)該略高于循環(huán)中的最高溫度,以避免跨臨界循環(huán)可能帶來的諸多問題;(2)工質(zhì)的壓力適宜,蒸發(fā)壓力不應(yīng)過高,同時(shí)冷凝壓力也不宜過低,合適的冷凝壓力最好能保持正壓;(3)在T-S 圖的飽和蒸氣線上,dS/dT 應(yīng)大于0或接近0;(4)蒸發(fā)潛熱小,粘度低,傳熱系數(shù)高,熱穩(wěn)定性好;(5)安全性高。
 
  應(yīng)選擇破壞臭氧層潛值(ozone depletion potential,ODP)和全球變暖潛值(global warming potential,GWP)值較低的工質(zhì),同時(shí)也要考慮價(jià)格因素且易于獲得。表1是依據(jù)制冷劑安全性制定的工質(zhì)安全性分類。
 
 
  (2)ORC系統(tǒng)。液體工質(zhì)經(jīng)工質(zhì)泵加壓后,在蒸發(fā)器中等壓吸熱,變成過熱高溫蒸汽(過程4—1);過熱蒸氣在汽輪機(jī)中絕熱膨脹,工質(zhì)對(duì)外做功(過程1—2),變成低溫低壓蒸氣;低壓蒸氣在冷凝器中等壓冷卻至液態(tài)(過程2—3);液態(tài)工質(zhì)通過工質(zhì)泵等熵加壓并送到熱交換器中(過程3—4)。如此連續(xù)循環(huán),將地?zé)崴械臒崃吭丛床粩嗟靥崛〕鰜恚筛咂肺坏碾娔堋?/div>
 
  (3)冷卻水循環(huán)系統(tǒng)。冷卻水經(jīng)冷凝器等壓冷卻有機(jī)工質(zhì)后,溫度升高經(jīng)冷卻水泵加壓送到冷卻塔中,被空氣冷卻后,循環(huán)使用。
 
  2 ORC工質(zhì)的選擇和計(jì)算
 
  2.1 工質(zhì)選取
 
  選擇ORC工質(zhì)時(shí),力求在熱源條件下使工質(zhì)吸收較多的熱量,并在把吸收的熱量更有效地轉(zhuǎn)化成功的同時(shí),也必須使所選擇的工質(zhì)滿足環(huán)保性和安全性要求。因而,所選工質(zhì)應(yīng)盡量滿足以下要求:(1)工質(zhì)的臨界溫度應(yīng)該略高于循環(huán)中的最高溫度,以避免跨臨界循環(huán)可能帶來的諸多問題;(2)工質(zhì)的壓力適宜,蒸發(fā)壓力不應(yīng)過高,同時(shí)冷凝壓力也不宜過低,合適的冷凝壓力最好能保持正壓;(3)在T-S 圖的飽和蒸氣線上,dS/dT 應(yīng)大于0或接近0;(4)蒸發(fā)潛熱小,粘度低,傳熱系數(shù)高,熱穩(wěn)定性好;(5)安全性高。
 
  應(yīng)選擇破壞臭氧層潛值(ozone depletion potential,ODP)和全球變暖潛值(global warming potential,GWP)值較低的工質(zhì),同時(shí)也要考慮價(jià)格因素且易于獲得[12-14]。表1是依據(jù)制冷劑安全性制定的工質(zhì)安全性分類。
 
  文獻(xiàn)[15]針對(duì)80100℃的地?zé)崴希遥?,選出性能較好的R600、R600a、R124、R142b、R134a、R152a、R245fa和R245ca這8種純工質(zhì)以及M01、M02和M04這3種混合工質(zhì)。本文結(jié)合設(shè)定工況的特點(diǎn)(95℃地?zé)崴┖停希遥孟到y(tǒng)對(duì)工質(zhì)的要求,初步篩選出R134a、R245fa等6種有機(jī)工質(zhì)[16]進(jìn)行計(jì)算比較,工質(zhì)的物性參數(shù)如表2所示。
 
  表2中,R134a、R245fa為純工質(zhì),R600a、R290為烷氫(異丁烷,丙烷),R407c、R413a為非共沸混合工質(zhì),其臨界溫度和環(huán)保型均滿足工質(zhì)的選取標(biāo)準(zhǔn)。
 
  2.2 設(shè)定工質(zhì)狀態(tài)參數(shù)
 
  假設(shè)本低溫余熱發(fā)電功率為100 kW,地?zé)崴M(jìn)口溫度約為95℃,出口溫度為75℃,蒸發(fā)器中地?zé)崴c工質(zhì)的最小換熱溫差?。保啊妫瑒t工質(zhì)在蒸發(fā)器內(nèi)最高溫度為85℃。假定環(huán)境溫度為25℃,冷卻水進(jìn)冷凝器前的溫度?。常础妫隹跍囟热。常啊?,冷凝器內(nèi)冷卻水與工質(zhì)的溫差?。怠?,從而可確定工質(zhì)的冷凝溫度為39℃。
 
  根據(jù)ORC原理,在理想狀況下,可確定工質(zhì)在T-S圖上各狀態(tài)點(diǎn)的物性參數(shù),如圖2所示。
 
  從圖3可看出,在設(shè)定工況下下,各工質(zhì)的熱效率相差不大,為10.24%11.39%,其中混合工質(zhì)R407c的熱效率最高為11.39%。
 
  3.2 系統(tǒng)不可逆損失比較
 
  系統(tǒng)的不可逆損失反映了能量梯級(jí)利用的程度,即工質(zhì)把從低溫熱源吸收的熱量有效轉(zhuǎn)化成功的程度,工質(zhì)的不可逆損失如圖4所示。
 
  Fig.4 Irreversible loss of ORC system從圖4可看出:R600a和R245fa這2種工質(zhì)不可逆損失較大,而2種非共沸混合工質(zhì)R407c、R413a的不可逆損失較小,這是因?yàn)橐话闱闆r下非共沸工質(zhì)與熱源有更好的匹配性;R134a的不可逆損失最小,說明在相同的工況下非共沸工質(zhì)的不可逆損失并不一定比共沸工質(zhì)小。
 
  3.3 質(zhì)量流量比較
 
  在發(fā)電功率一定的情況下,單位工質(zhì)的發(fā)電能力與所需工質(zhì)的流量成反比。從式(2)可以看出,工質(zhì)在汽輪機(jī)中的焓降越大,系統(tǒng)所需工質(zhì)的流量越小。
 
  工質(zhì)的流量是工質(zhì)泵選型的重要參數(shù),由于國內(nèi)生產(chǎn)的機(jī)械隔膜泵和液壓隔膜泵額定流量較小,一般不超過3 000L/h。另外,工質(zhì)流量大會(huì)要求工質(zhì)泵的功率要大,從而會(huì)降低整個(gè)系統(tǒng)的效率從而降低系統(tǒng)的經(jīng)濟(jì)效益。為降低系統(tǒng)設(shè)備成本,提高經(jīng)濟(jì)效益,應(yīng)盡量選擇流量小的工質(zhì)。發(fā)電功率為100kW 時(shí),工質(zhì)的流量計(jì)算如圖5所示。
 
  從圖5可看出:在設(shè)定工況下,各個(gè)工質(zhì)的流量相差較大;2種混合工質(zhì)的流量相對(duì)比其他工質(zhì)要大,其中R413a最大為7.86kg/s,可見其單位工質(zhì)的做工能力較差。
 
  3.4 系統(tǒng)汽輪機(jī)內(nèi)壓力的比較
 
  汽輪機(jī)內(nèi)的壓力包括蒸發(fā)壓力(極大值)和冷凝壓力(極小值),壓力需適宜,壓力過大對(duì)設(shè)備的耐壓強(qiáng)度要求高,一方面會(huì)增加投入的成本,另外一方面密封性往往難以達(dá)到要求,目前國內(nèi)一般汽輪機(jī)內(nèi)的壓力不宜超過2MPa,如果壓力過低,系統(tǒng)外的空氣容易進(jìn)入系統(tǒng)。一般情況下,冷凝壓力均滿足要求,因而這里只考察蒸發(fā)壓力。設(shè)定工況下,ORC系統(tǒng)汽輪機(jī)內(nèi)的壓力如下圖6所示。
 
  由圖6可看出:只有R245fa和R600a的壓力較為適合,其他幾種工質(zhì)均略大,其中R245fa汽輪機(jī)內(nèi)的壓力為0.79 MPa,R600a 汽輪機(jī)內(nèi)的壓力為1.35MPa。
 
  4 結(jié) 論
 
  (1)在設(shè)定工況下,R600a的熱效率較高,壓力也較為適中,但由于其不可逆損失較大,單位工質(zhì)的發(fā)電能力較差,且具有爆炸性,因而不能作為最優(yōu)工質(zhì)。
 
  (2)一般情況下,非共沸工質(zhì)有熱源的匹配性要優(yōu)于共沸工質(zhì),但不是絕對(duì)的。
 
  (3)R245fa各項(xiàng)評(píng)價(jià)標(biāo)準(zhǔn)的結(jié)果均比較優(yōu)異,比較適合作為設(shè)定工況下的ORC工質(zhì)。